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ABSTRACT
Assessing spatial variation in hydrologic processes can help to inform freshwater management and advance ecological
understanding, yet many areas lack sufficient flow records on which to base classifications. Seeking to address this challenge, we
apply concepts developed in data-rich settings to public, global data in order to demonstrate a broadly replicable approach to
characterizing hydrologic variation. The proposed approach groups the basins associated with reaches in a river network
according to key environmental drivers of hydrologic conditions. This initial study examines Colorado (USA), where long-term
streamflow records permit comparison with previously distinguished flow regime types, and Ecuador, where data limitations
preclude such analysis. The flow regime types assigned to gages in Colorado corresponded reasonably well to the classes
distinguished from environmental features. The divisions in Ecuador reflected major known biophysical gradients while also
providing a higher resolution supplement to an existing depiction of freshwater ecoregions. Although freshwater policy and
management decisions occur amidst uncertainty and imperfect knowledge, this classification framework offers a rigorous and
transferrable means to distinguish catchments in data-scarce regions. The maps and attributes of the resulting ecohydrologic
classes offer a departure point for additional study and data collection programmes such as the placement of stations in under-
monitored classes, and the divisions may serve as a preliminary template with which to structure conservation efforts such as
environmental flow assessments. Copyright © 2015 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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INTRODUCTION

Managers worldwide are challenged to make informed
decisions about dam construction, river diversion, land
conversion and other development actions that affect
freshwater biodiversity and resource allocation. The
challenge is especially acute in settings where rapidly
growing human populations are vulnerable to flooding and
inadequate drinking water supplies (Vorosmarty et al.,
2010). A data-driven description of the spatial variation in

hydrologic processes is therefore critical to understanding
water resource availability and to defining freshwater
conservation guidelines. Yet the data, time and money
available for such assessments are scarce globally,
particularly in tropical areas with abundant biodiversity
(Abell et al., 2008). In this context, a classification system
can aid research and management by translating the full
spectrum of natural variation into a tractable set of groups.
Classifications based on statistical similarity in the long-

term discharge records at gages in relatively unimpaired
basins can define natural or ‘normative’ flow types where
such data exist (Olden et al., 2012; Archfield et al., 2014).
Such approaches, termed ‘inductive’ by Olden et al. (2012),
follow increasingly well-established protocols for which
measures to calculate and how to use them to aggregate
groups. These classifications also sometimes incorporate
geologic, chemical or temperature information, and research
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has begun to address the quantification of uncertainty (Reidy
Liermann et al., 2012b; McManamay et al., 2014). Yet, the
necessary streamflow data are unavailable or insufficient in
many regions, many of which are also those under the greatest
pressure to develop water use infrastructure (Vorosmarty et al.,
2010; Richter et al., 2011). In such settings, a ‘deductive’
classification therefore offers an important means to capture key
differences by basing classes on the more readily available
geographic environmental data that reflect the main drivers of
hydrologic processes (Olden et al., 2012; Wagener et al., 2007).
Numerous studies have demonstrated the utility of

deductive approaches in areas with relatively abundant
hydrological and biological data. For example, Snelder and
Biggs (2002) established a conceptual framework for river
network classification that specified the dominant processes
acting across a hierarchy of spatial scales: climate, source
of flow (surface versus groundwater), geology, land cover,
network position and valley form. When applied to New
Zealand (Snelder and Biggs, 2002; Snelder et al., 2005),
France (Snelder et al., 2009) and Spain (Peñas et al., 2014),
this framework has successfully generated information to
support research and management. In the United States,
Wolock et al. (2004) identified 20 non-contiguous ‘hydro-
logic landscape regions’ (HLRs) by clustering basins
according to similar climate, topographic and geologic
attributes (grouping 43 931 units, each approximately
200 km2). These HLRs effectively predicted environmental
variance in catchments above a set of nationwide water
quality sampling sites, although prediction strength was
lower for in-channel nutrient conditions and fish species
richness. Higgins et al. (2005) also illustrated the use of
four tiered spatial scales to distinguish classes based on
combinations of physical and biological data, such as
dominant geology, historical distributions of native fish and
patterns of watershed connectivity. Application of this
method in the basins of the Columbia and Upper Paraguay
Rivers underscored the value of a classification system to
freshwater conservation planning and revealed challenges
for implementing such analyses in data-scarce locations.
Finally, Sawicz et al. (2011) clustered 280 undeveloped
basins throughout the eastern US according to physical
attributes such as mean elevation, percentage agricultural
land and number of days with precipitation. They found
that class membership effectively represented differences in
six hydrologic signatures relevant to management objectives
(e.g. the runoff ratio and the shape of the flow duration curve).
Recent research in data-rich areas continues to advance our
understanding of best practices for streamflow classification
and how catchment similarity corresponds to streamflow
properties (Archfield and Vogel, 2010; Snelder and Booker,
2012; Archfield et al., 2014; Sawicz et al., 2014).
Such studies have clarified many important issues for

hydrological classification, but additional work is needed to
extend the ideas further into data-scarce settings using

methods that are applicable both globally and at relatively
fine spatial scales. Higgins et al. (2005) identified circum-
stances in which limited data might necessitate a ‘top-down’
approach, drawing more heavily on expert opinion and
disaggregating focal units rather than aggregating up from
fine-grained measures. Nonetheless, the increasing availabil-
ity of medium-resolution and high-resolution biophysical
data sets, alongside increases in computing power and
advances in analysis software, has created the potential to
define ‘bottom up’ classifications built by clustering spatial
units according to data. These classifications could refine
understanding of broad hydrologic patterns across water-
sheds and reveal finer scale patterns relevant to organisms
and ecosystem functions.
Accordingly, our research objective was to develop a

broadly replicable catchment classification approach that
could be applied in areas with little to no streamflow data.
Building on the concepts established by Poff (1997),
Snelder and Biggs (2002), Wolock et al. (2004), Higgins
et al. (2005) and others, we analyzed several readily
accessible global data sets on topography, climate, soils and
land cover in conjunction with catchments delineated at
multiple spatial scales worldwide. We compare the
proposed approach with a recent inductive classification
based on high-quality streamflow data in Colorado
(McManamay et al., 2014) and apply the method to the
mainland portion of Ecuador as a data-scarce case study,
thereby providing an initial test of performance in two
steep, biophysically diverse landscapes.

METHODS

Study areas

Ecuador and Colorado encompass similarly sized land
areas (approximately 283 000 and 269000 km2, respective-
ly) that are divided by central mountain ranges separating
eastern and western lowlands. Mainland Ecuador contains
staggering biophysical gradients from the Pacific coastal
plains, up through the Andean highlands (over 6200m),
and then down into upper reaches of the Amazonian basin.
Strong environmental gradients also exist in Colorado,
from the arid western canyons and mesas, up through the
foothills and high peaks of the Central and Southern Rockies
(over 4000m), and down into the semi-arid grasslands to the
east. Nonetheless, numerous geomorphic, biogeographic and
hydroclimatic differences are apparent between tropical,
coastally influenced Ecuador and temperate, mid-continental
Colorado.
The ongoing development of new water infrastructure to

secure municipal, hydroelectric and agricultural water
supplies in Ecuador contrasts with the extensive history of
logging, mining, ranching, irrigated farming and hydro-
power that have already transformed many rivers and their
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catchments in Colorado (Wohl, 2001). As in other emerging
economies, the water resource regulations and protective
national statutes that are taking shape in Ecuador require
rapidly and transparently produced scientific guidance
(Anderson et al., 2011). The Instituto Nacional de
Meteorologia e Hidrologia is working to expand the network
of river gaging stations as well as the public availability of
discharge records in Ecuador. However, both the number of
stations and the duration of continuous, consistent measure-
ment remain limited. For example, the monthly mean flows
during some years between 1960 and 2010 are publically
accessible for only 14 stations in Ecuador (http://www.
serviciometeorologico.gob.ec/caudales-datos-historicos/). In
contrast, the United States Geological Service offers real-time
stream flow information for more than 300 sites in Colorado,
and maintains historical statistics for more than 1200 gages,
with several continuous records extending back to the early
20th century (http://waterdata.usgs.gov/co/nwis/current/).

Clustering approach

The analysis was conducted in the free and open-source R
platform (3.2.2; R Core Team, 2015), and the script and
data objects may be downloaded at http://figshare.com/s/
4232e9bad11b11e4b70506ec4bbcf141. Note this will link
to a public DOI following review: DOI 10.6084/m9.
figshare.1309687).

We selected the recently released HydroBASINS data
set to provide a spatially continuous set of polygons
delineating the local contributing area for each reach in a
drainage network based on a hydrologically corrected
digital elevation model (Lehner and Grill, 2013). Whereas
the precursor HydroSHED data sets were limited to large-
scale basins; this new product offers a standardized set of
consistently defined basins across several hierarchically
nested spatial scales (using the Pfafstetter coding system).
We opted to demonstrate the utility of this data set after
confirming that the HydroBASIN delineations very closely
resembled those generated independently by an alternative
algorithm. The reach basin polygons encompassed the area
upslope of the first channel junction in headwater
catchments or the area draining to a junction-to-junction
reach in subsequent downstream portions of the network.
We conducted all analyses with the finest scale ‘Level 0’
(L0) reach basins but also examined the effect of using the
coarser, larger ‘Level 8’ basins. Table I describes number
and summary statistics for these units in both locations.

For each reach basin, we associated environmental
attribute values derived from global, publicly available
raster data sets recording elevation, climate, soils and land
cover (Table II; Lehner et al. 2008; Hijmans et al., 2005;
Hengl et al., 2014; Broxton et al., 2014). We first
performed basic terrain processing to yield topographic
attributes and aggregated land cover from 17 to 6 types.
We then examined pairwise scatterplots and correlations

among attributes to select a set for clustering. In addition to
elevation, slope, aspect and roughness, we included annual
mean precipitation amount, the range of annual temperature,
the month-to-month variation in precipitation, the percent-
ages of clay, silt and coarse fragments, the estimated amount
of organic soil carbon, soil pH and the percentages of forest,
shrub, grassland, crop, urban and water/snow covers.
Environmental feature values per reach basin were calculat-
ed as the mean value of the cells of each raster data layer
within that basin polygon (i.e. as a zonal statistic for the
reach basin).
We sought to identify the classification best supported by

the data, while retaining the means to evaluate the relative
strength of alternatives with fewer or greater numbers of
classes. After exploring several algorithms including k-medoid
and Gaussian mixture model routines, we chose to perform
hierarchical agglomerative clustering (i.e. progressively group-
ing reach basins according to their multi-dimensional
similarity). This well-studied procedure is mathematically
straightforward, provides nested solutions as the number of
clusters increases or decreases and accommodates skewed
feature distributions. It has also been recommended and
successfully implemented for inductive stream flow classi-
fications based on time series data (Olden et al. 2012).
Using Ward’s method (Ward, 1963), we aggregated reach
basins via pairwise Euclidean distances calculated from
scaled and centred features (i.e. after subtracting the
feature mean and dividing by the standard deviation, we
calculated the square root of the summed squared differences
between observations).
As an alternative to more heuristic searches for points of

inflection in the decline of group variation with more
groups, the gap statistic provides a more consistent and
theoretically grounded means to define the preferred
number of groups given a range of cluster solutions
(Tibshirani et al., 2001; Maechler et al., 2014; R function
cluster::clusGap). The ‘gap’ refers to the difference
calculated between the within-group variance resulting
from a specific division of the data into k clusters and the
variance for k clusters of a null distribution with the same
number of observations and features. Taking the gap
statistic value as a function of k, we adopted the rule
proposed by Tibshirani et al. (2001) to select the smallest k
producing a gap value greater than or equal to the value for
k+1 minus one standard error (Maechler 2014). In effect,
when gap values followed a saturating curve, this tended to
select the class number at or near the earliest point of
inflection. We also tested cluster stability by comparing the
consistency of class membership across multiple bootstrap
subsets of the segment basins, measured as the mean
Jaccard similarity relative to the baseline cluster solution
(Hennig, 2014; R function fpc::clusterboot). Greater cluster
stability indicates that classifications are robust to reduc-
tions or substitutions in the sampled units (i.e. reach basins).
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In order to accommodate the possibility of highly resolved
classifications, we allowed a maximum of 30 classes.

Comparison to existing classifications

McManamay et al. (2014) used a Gaussian mixture model
algorithm to define 12 flow regime classes within the
continental US according to measures of discharge
magnitude, timing, frequency, duration and rate of change
drawn from long-term streamflow records. As a prelimi-
nary assessment of the relationship between a classification
based on environmental features and one based on
observed flows, we selected those gages that overlapped
with the classified area in Colorado for comparison. We
eliminated gages with drainage areas larger than twice the
maximum area of the L0 reach basins (514 km2). The
remaining 81 gages were located in a combination of
‘reference’ basins (n=46; i.e. with little to no upstream
hydrologic modifications such as dams, diversions, return
flows or conversion of native vegetation), ‘non-reference’
basins (n=32) and ‘pre-dam’ basins (n=3). These gages
were classified as intermittent flashy (IF), characterized by
high intermittency and extended low-flow duration, stable
groundwater (SSGW), with high baseflow and few
fluctuations, and snowmelt (SNM1 and SNM2), with a
distinct high-flow period, a winter minimum and relatively
stable baseflow (SNM2 exhibited slightly higher baseflow
and later high flow timing).
In addition, we compared the classification results in

Ecuador with the freshwater ecoregions of the world (FEOW)

that overlapped the national boundary (Abell et al. 2008;
www.feow.org). In a notably comprehensive effort, several
years of collaboration among more than 100 experts led to a
classification based primarily on fish distribution information.
The associated map may be the best widely available
depiction of global ecohydrologic variation, and this research
has supported subsequent assessments of environmental risk
such as the threat to fish diversity posed by dams (Reidy
Liermann et al., 2012a).

RESULTS

Clustering performance

Gap statistic values increased rapidly with increasing
numbers of class divisions before plateauing with smaller
marginal increases (Figure 1). However, gap values
continued to increase up to the maximum number of clusters
considered in both Colorado and Ecuador. The finer-scale
L0 reach basins supported more highly resolved classifica-
tions in both locations (indicated by vertical dashed lines in
Figure 1), but both the selected number of clusters and the
increase from L8 (coarse) to L0 (fine) solutions were larger
in Ecuador (Figure 1B; preferred solutions occurred when
the gap value increase from an additional group was within
the standard error of a given number of clusters).
The overall stability of clustering solutions did not differ

markedly between locations or with the scale of reach basins
(Figure 2; stability was measured as the mean Jaccard similarity

Table I. Reach basin counts and areas (km2) for HydroBASINS polygon sets in Colorado and Ecuador at level 0 (fine) and level 8 (coarse).

Study region and resolution N Minimum Median Maximum

Colorado L0 2204 0.3 136 257
Colorado L8 426 0.3 535 5 467
Ecuador L0 2002 0.4 138 414
Ecuador L8 332 2.7 597 9 059

Table II. Environmental attribute data used in the analysis.

Data type Features Units Resolution Source

Topography Elevation, aspect, slope, roughness m ~90m HydroBASINS hydrologically
conditioned DEM based on
SRTM (http://www.hydrosheds.org)

Climate Mean annual precipitation (Bio 12),
CV monthly precipitation (Bio 15),
Range annual temperature (Bio 7)

mm, C° ~1 km BioClim: Hijmans et al. 2005
(www.worldclim.org)

Soils Clay, silt and coarse fragments,
estimated organic soil carbon, soil pH

% ~1 km Soilgrids: Hengl et al. 2014
(www.soilgrids.org)

Land cover/use Forest, shrub, grassland, crop, urban and
water/snow; aggregated categories from
MODIS types

% 0.5 km Broxton et al. 2014 (http://landcover.usgs.gov/
global_climatology.php)
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between the baseline cluster solution and 100 bootstrap
replicates, with values approaching 1 for perfectly reproduced
groupings). In Colorado, a class representing the drier, lower,
eastern plains was most consistently distinguished across both
sets of reach basin units. The wet, forested, eastern lowlands
were similarly well defined in Ecuador for L0 and L8.
However, the scale of basin units did influence the locations of
lower cluster stability (lighter areas in Figure 2).

Colorado comparison

The best-supported cluster solution for the L0 reach basins
in Colorado produced a system of six classes that reflected
known hydro-climatic patterns (Figure 3A). These classes
represented an area of arid canyonlands in the southwestern
corner of the state (blue in Figure 3), mid-elevation
shrublands to the east and west of the Continental Divide
(red in Figure 3), slightly higher, wetter and more forested
foothills (green in Figure 3), the central high-elevation
mountainous areas (purple in Figure 3), the eastern Great
Plains and San Luis Valley (orange in Figure 3) and peri-
urban areas at the base of the Front Range corresponding to

Colorado Springs, the Denver metro area and Ft. Collins
(light blue in Figure 3).
The streamflow gages classified by McManamay et al.

(2014) into flow regime types were located only within the
mid-elevation shrubland, foothills and high-elevation
mountainous classes (Table III). No flow types appeared
to be located within plainly incorrect landscape classes.
Both stable groundwater types (SSGW) occurred in the
shrubland class, and the snowmelt types were limited to the
foothills and mountains (with 56 of 66 SNM1 in the
mountains). The five intermittent flashy (IF1) gages
occurred in all three classes, but the two located in a
mountain class were immediately adjacent to mid-elevation
shrubland. The two least-common classes (southwestern
canyonlands and Front Range peri-urban) were lost in the
four class solution selected for the coarser L8 reach basins
(not shown). As expected, the overall interspersion of
classes was also reduced (e.g. compare Figure 2B to 2A),
but the relationships with flow types were similar to those
for the L0 classes.

Ecuador

The best-supported cluster solutions captured the major
known gradients from the Pacific coastal lowlands, through
the central Andean cordillera, and across to the Amazonian
headwaters. However, despite reinforcing the importance
of elevation differences, the classifications for both the L0
and L8 reach basins indicated the potential complexity of
ecohydrologic processes in the Northern Andes with 23
and 13 classes, respectively (Figure 1). In particular, the
classification of the L0 reach basins contrasted with the
four FEOW zones within Ecuador (Figure 4),
distinguishing boundaries at a much finer scale. A single
eastern class based on environmental features included
both the FEOW ‘Western Amazon piedmont’ and
‘Amazonas Lowlands’ zones, but more than a dozen L0
classes were within each of the North Andean Pacific Slope
and Amazonas High Andes zones (and n=12 and n=6L8
classes were present, respectively).
Catchment classes in Ecuador varied substantially in the

environmental factors contributing to hydrological patterns
(Figure 5, Table IV). In contrast to the increase in
precipitation and percent forested cover with elevation in
Colorado (Figure 3 lower panels), these key features
showed evidence of greater divergence. For example, the
neighbouring classes 4 and 5 exhibited similarly high forest
cover, but the higher, steeper class 4 had less overall
precipitation that was also more variable between months.
Further to the south, classes 9 and 10 had comparable
amounts of annual precipitation and clay soils, but the
higher, steeper and more forested class 10 also displayed
lower month-to-month variation in rainfall. Along the
expansive coastal plain to the west of the Andes, less forest
area, more clay and more cropped area distinguished class

Figure 1. Gap statistic values with increasing number of classes for (A)
Colorado and (B) Ecuador. Solutions for the finer-scale L0 reach basins
(black circles) and coarser L8 (grey diamonds) are illustrated with the
number of classes (dashed vertical lines) selected where the change in gap
value from an additional group was less than or within the standard error

of the value at a given number of clusters.
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19 from the adjoining class 21, despite the relative topographic
similarity in elevation and slope.

DISCUSSION

This research evaluated the number and spatial distribution of
landscape classes having potentially distinct hydrologic
conditions. The classes defined in Colorado reflect major
hydroclimate divisions and accord with flow regime types
based on observed discharge. Similarly, the classification
results for Ecuador provide additional, finer-scale information
to supplement the boundaries of existing global freshwater
ecoregions. These findings suggest that an approach such as
this one can usefully discern divisions for preliminary
planning or regulatory processes in some data-scarce settings.
The study locations encompassed similar total areas, and

the number and size of reach basins was comparable
(Table I). However, the larger number of classes supported
in Ecuador suggests that the method is sensitive to
empirically greater spatial variation in environmental
conditions in a tropical mountain setting relative to a
temperate one. The range of values across reach basins was
greater for 12 of the 18 features included in clustering, including
precipitation amount and monthly variability, elevation, slope,

roughness, soil properties and forest cover percent. In
addition, 81 of 153 pairwise correlations among the
features of L0 reach basins were lower in Ecuador (mean
absolute values of Pearson r for all features, Ecuador =0.29
versus Colorado=0.36). However, as indicated by the
steady increase in gap statistic values with greater numbers
of divisions (Figure 1) and the moderate stability of most
classes (Figure 2), the classifications in both locations
provide plausible divisions over continuous functional
gradients rather than serving to recover fundamentally
distinct groups. This outcome highlights the importance of
viewing classification results, from this or any other
approach, as an evidence-based hypothesis rather than a
definitive categorization of essential differences (Snelder and
Booker, 2012).
Furthermore, if sharper transitions favour more clearly

defined divisions, then locations with very gradual environ-
mental gradients will be harder to classify well. Thus, the
basic biophysical characteristics of some areas are likely to
compound the challenge of classifying natural spatiotempo-
ral variability, in addition to data accuracy and precision
concerns. For example, very smoothly grading topography
and precipitation amounts may hinder the subcategorization
of lowland tropical forest or prairie steppe, as was evident in

Figure 2. Stability across cluster solutions for Colorado (A, B) and Ecuador (C, D). Panels illustrate reach basin polygons dissolved according to class,
with finer L0 (A, C) and coarser L8 (B, D) units. Darker colours indicate more stable classes (values approaching 1) that were more frequently

regenerated across bootstrap replicates of clustering. The set of L8 reach basins extends over a slightly larger overall extent in both locations.
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eastern Ecuador and Colorado. In this regard, the proposed
nested classification approach has the advantage of spatially
subdividing classes as classification levels are added. In
contrast, non-hierarchical clustering methods may reconfig-
ure the arrangement of classes in less intuitive ways (e.g. the
transition from two to three classes may be less likely to
involve a split within one of the two).

The specific goals of a classification effort will influence
the most appropriate geographic scale of analysis, but
this study suggests that an average reach basin area on the
order of 100 km2 (i.e. the scale of the HydroBASINS level
0 units) can support a well-resolved classification that
remains tractable relative to intermediate political bound-

aries (e.g. states, districts or counties). Alternatively, an
average area between 500 and 750km2 may remain suited
to rapid analysis and yield a manageable number of classes
over larger extents than considered here, while still
capturing sufficiently detailed variation. Nonetheless, the
results for the L0 and L8 reach basins indicated the need
for further research to develop the relationship between the
area of classified units and the best-supported number of
classes. The 77% increase from L8 to L0 in Ecuador versus
the 50% increase in Colorado confirmed the importance of
controlling for consistent spatial units in any comparison of
multiple regions. Future investigation could examine how
this sensitivity to reach basin area differs across additional

Table III. Correspondence between classes defined for Colorado according to environmental features and flow regime types based on
streamflow records. Colours in parentheses refer to those in Figure 3. The included flow types were intermittent flashy (IF), snowmelt

(SNM1 and SNM2), and stable groundwater (SSGW).

Landscape feature classes IF1 SNM1 SNM2 SSGW

Mid-elevation shrublands (red) 2 0 0 2
Western Foothills (green) 1 10 5 0
Higher-elevation mountains (purple) 2 56 3 0

Figure 3. (A) Map of the best-supported classification using environmental features for L0 reach basins in Colorado. Triangles indicate the location of
the long-term streamflow gaging stations used to develop the flow types used for comparison (IF = intermittent flashy, SNM1 and 2 = snowmelt,
SSGW= stable groundwater). Colors of the 6 classes based on environmental features match those in panels B–D. (B–D) Per class distributions of values

across reach basins for 3 of 18 environmental features used in clustering.
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regions, and whether it exhibits any consistent trends with
latitude, ocean proximity or other major global features.
The HydroBASINS data set greatly facilitates such
research by making a considerable range of spatial units
easily available, but another analysis could also examine
the minimum flow accumulation threshold suitable for
stream network definition and delineation of even finer
reach basins.
The approach presented here is based on established

statistical procedures and previous hierarchical environmen-
tal classifications shown to be effective and credible in data-
rich areas (Snelder and Biggs, 2002; Wolock et al., 2004;
Snelder et al., 2005; Sawicz et al., 2011; McManamay et al.,

2012). However, we assume that the resulting classes best
capture differences in riparian and in-channel conditions for
reaches with upstream drainage areas within the reach basin
unit (as distinct from the single ‘mainstem’ reach that forms
the basis for the unit boundaries in non-first order reaches).
Our decision not to calculate the values of environmental
features over the entire upstream drainage area was motivated
by interest in addressing smaller rivers and streams than have
typically been the focus of global analyses. Defining sensible
classes under the alternative approach of whole-watershed
values also merits additional research into several key
questions. For instance, what is the appropriate way to stratify
spatial units when including cumulative upstream area? Are

Figure 4. (A) Map of the best-supported classification using environmental features for L0 reach basins in Ecuador, and (B) the FEOW divisions present
within the national extent. More than 10 classes overlapped with the North Andean Pacific Slopes for both the L0 and L8 sets of reach basins (see also

Supplemental Figure 1).
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distinct classifications justified for different Strahler orders, or
should the drainage area itself be included as a clustering
feature, or perhaps as the basis for a preliminary clustering
serving as an alternative to traditional stream ordering? A
spatially uniform weighting to compute the mean has the
advantage of conceptual and technical simplicity, but a
distance-weighted average may have greater relevance to
many ecohydrologic variables of interest. If a distance-based
method is preferable, should weights be based on network or
Euclidean distance metrics or a combination that depends on
the included variables? The emphasis on ‘local’ influences
within the reach basin, rather than the cumulative biophysical
attributes subject to river network structure, is an important
caveat for interpreting this research. However, this method
affords valuable conceptual and logistical simplicity while
maintaining the scope to address larger river sections via the
choice of HydroBASINS level.

Such considerations of network scale relate directly to
management tasks involving environmental flow assess-
ment and regulation. Environmental flow guidelines define
limits for infrastructure permitting or operations that are
intended to protect the flow regime attributes that favour
native biota and ecosystem integrity. The development of a
hydrologic classification has been proposed as an important
step towards assessing environmental flows via a partici-
patory process such as the Ecological Limits of Hydrologic
Alteration (Poff et al., 2010). Such assessment is urgently
needed amidst the intensifying pressure to develop water
infrastructure in the Northern Andes (Finer and Jenkins,
2012). Indeed, this research was initiated after attempts to
develop a hydrologic classification for Ecuador were
stymied by the limited flow data available for direct analysis
or to support rainfall-runoff modelling. The catchment
classes produced from landscape features do not necessarily

Figure 5. Distributions of reach basin characteristics across the 23 L0 classes for Ecuador. Colours and numbering follow Figure 4a.
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quantify differences in specific flow regime features (e.g. the
frequency, duration and timing of high-magnitude or low-
magnitude discharge), but this research suggests that these
classes do highlight the number and location of primary
zones with similar hydrologic processes that give rise to
these flow regime features. Thus, we envision that the
classification system and maps resulting from this approach
could clarify the need for more detailed environmental risk
assessment or ground the design of additional monitoring
networks. For instance, the classification in Ecuador could

support planning to expand the system of streamflow gages.
Under-represented classes in the current monitoring network
might be targeted for additional flow monitoring (Figure 6).
If classes are assumed to correspond to distinct

ecohydrologic regimes and thereby particular habitat
conditions and biological communities – an assumption
that requires further testing – then a classification such as
this one could also help to guide planning for the expansion
or revision of protected area networks for freshwater
biodiversity (McManamay et al., 2015). The capacity for

Figure 6. Location and number of Instituto Nacional de Meteorologia e Hidrologia streamflow gages relative to L0 classes in Ecuador The map in (A)
illustrates locations with consistent, accessible data (white triangles; counts in panel B) and additional gaging stations (yellow crosses; counts in panel C)

with unknown duration, consistency of measurement, and quality control.
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rapid updating (e.g. with raster data drawn from climate or
land cover scenarios of interest) could also permit an initial
depiction of the hydrologic implications of anthropogenic
impacts at a regional scale. Investigating changes in the
number and distribution of classes under future scenarios
might hold value as a way to visualize the loss, creation or
relocation of niches in freshwater systems (Auerbach et al.,
2012). Further comparison with biogeographic data
could also address questions of basic scientific interest,
such as testing the hypothesis that greater diversity in
ecohydrologic function predicts greater taxonomic or trait
diversity in aquatic organisms.
This study also points towards opportunities to advance

both deductive, geospatial catchment classification and the
prediction of flows for ungaged locations in data-scarce
areas. These research objectives are closely related because
the environmental similarities that drive class groupings
also support the transfer of rainfall runoff model parameter
values or the statistical properties of streamflow. In
particular, this protocol highlights the promise of automated
data brokering and preprocessing to accelerate assessments.
As new remote sensing instruments and distributed sensor
networks are combined with the ongoing consolidation of
data repositories, the improving quality and availability of
public, global data sets are increasingly likely to support
valid regional or national assessments in data-scarce areas.
A number of recent projects have sought to develop end-
user software for the estimation of ‘reference’ or ‘natural’
discharge properties via flow duration curves (Smakhtin and
Eriyagama, 2008; Archfield et al., 2013) and the compar-
ison of multiple alternative prescribed flow regimes (Hickey
et al., 2014). These and other frameworks can benefit from
dynamic connections to the kinds of environmental
databases used in this study, permitting regularly updates
to climate, soils or land cover data. For instance, Archfield
et al. (2013) demonstrated a method to estimate discharge
time series through statistical relationships between catch-
ment properties and flow duration quantiles. Establishing
automated services to provide a current representation of
catchment properties could improve the hydrologic charac-
terizations for various objectives.
The scripted workflow developed for this research

reduces the time required to return a classification to a
few hours, including download and processing time.
However, very large areas with many reach basins are
likely to require subdivision or additional parallelization,
and regions with very irregular boundaries (e.g. archipel-
agoes and large inland water bodies) may require additional
manipulation. Moreover, as noted earlier, our analysis was
restricted to two mountainous regions in order to facilitate
comparison. Thus, the approach should be applied with
caution in other geographic settings (e.g. plains, deserts,
temperate forests, etc.) where further testing and develop-
ment is needed. Nonetheless, this work demonstrates the

increasing viability of real-time analyses of ecohydrologic
conditions in conjunction with planning or management
activities.

CONCLUSION

Water resource managers and environmental planners are
challenged to make informed, environmentally sound
decisions that balance human and ecosystem needs. This
challenge is especially acute where data-scarcity coincides
with population growth, burgeoning water resource
development and high freshwater species biodiversity.
The classification framework outlined here affords a
systematic and quantitative depiction of hydrologic varia-
tion at policy-relevant spatial scales. The method produced
a classification system that was congruent with groupings
based on flow records in the USA and was successfully
applied to Ecuador. The proposed technique is flexible and
can incorporate additional or alternative data sets, such as
higher resolution, region-specific land cover or geochem-
ical attributes. The nested solutions created by the
hierarchical approach allow adjustment of the number of
classes to suit a particular need without disrupting higher-
order groupings. Although further testing in additional
locations is needed, the resulting classifications could form a
transparent, reproducible departure point for tasks such as
the design of monitoring networks or the definition of
environmental flow standards.
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